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Depletion driven adsorption of colloidal rods onto a hard wall

Richard P. Sedr
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 3 September 1997

In a mixed suspension of rods and small polymer coils, the rods adsorb onto a hard wall in contact with the
suspension. This adsorption is studied in the low density of rods limit. It is driven by depletion forces and is
much stronger for long rods than for spheres. This is shown by means of exact, numerical, calculations and an
approximate theory.S1063-651X98)08202-9

PACS numbeps): 82.70.Dd, 67.70tn, 61.25.Hq

[. INTRODUCTION tional entropy goes up. For polymer coils rather smaller than
the spheres, free energies of adsorption of upkgTehave
Most of the properties of a colloidal suspension dependeen obtainefl10,11], wherekg is Boltzmann’s constant and
on the shape of its constituent particles. Certainly, the bulk' is the temperature.
phase behavior of colloidal particles is sensitive to their Rodlike colloids are not uncommon, examples are the to-
shape, as well as to the strength of any attractive interaction®acco mosaic virug18] and synthetic colloidal rodg,19].
Spheres behave differently from rods, which in turn behavelhe effect of adding polymer to their suspensions has been
differently from disks. This is true in the preseridg?] and  studied, at least in the bu[®,18,20. As far as we are aware,
in the absencg3,4] of attractive interactions. However, a no experiments comparable to those for spheres near a wall
description of the bulk phase behavior does not complete theave been performed. However, Buitenheisal. [20] report
description of a suspension. We might also like to know, fora thin layer of the nematic phase of the rods against the wall
example, its behavior near the walls of its container. Weof their capillary. This is at least suggestive of some attrac-
study this behavior here for rodlike colloidal particles in thetion between the rods and the capillary. The adsorption of
presence of nonadsorbing polymer, and compare this behateds does not seem to have been much studied theoretically.
ior to that of spherical particles. A pure suspension of rodsAn exception is the work of Matsuyamet al. [21], who
does not adsorb onto a hard wall, in the absence of signifistudied a model of rods with discrete orientations. However,
cant van der Waals attractions; here we will assume that theijie adsorption of polymers that have some degree of rigidity
are negligible. Indeed, the density of rods near the wall id1as been studied; see RE22] and references therein. The
below the bulk density. However, the rods in a mixed sustesults are consistent with those found here; as the rigidity of
pension of rods and small nonadsorbijgto either the rods the polymer increases, so does the adsorption.
or the wal) polymer coils do adsorb onto the wall. This  In the following section we first derive the exact statistical
adsorption is driven by the increase in the volume availablgnechanical expression for the density profile of rods near a
to the polymer coils when a rod is near a wall, the so-calledvall, as a function of the polymer density. We use this ex-
depletion force$5—9]. We find much stronger adsorption for pression in two ways: the first is by evaluating it exactly
rods than has been found for sphef&8—-12. using Monte Carlo integration and the second is by deriving
The depletion driven adsorption of spherical colloidal par-a simple analytical approximation to it. Example profiles of
ticles onto a wall has been extensively studi@g®-14. the density of rods near the wall are shown and discussed in
These studies were primarily experimental but comparisorPec. lll. We end with a conclusion, Sec. IV.
was made with theories for depletion forcgk5,16 and
gualitative agreement found. Both the sphere and the wall Il THEORY
exclude the centers of mass of the polymer coils from a
volume that extends up to about the radius of gyration of the We start by defining our models for the rod, the polymer
polymer away from the surface of the sphere or wall: thecoil, and the wall. The interactions between polymer coils
Asakura-Oosawa model for the interaction of the polymerare neglected, i.e., a fluid of just polymer coils is simply an
with the sphere and waltl5,16. This is true as long as the ideal gas. This leaves us with just three interactions in order
radius of gyration is not too much larger than the radius ofto describe our system: the rod-wall, polymer-wall, and rod-
the spherg¢17]. When a sphere approaches the wall, the vol-polymer interactions. The rod-wall interaction is that of a
ume the sphere excludes to the polymer and the volume thigard spherocylinder with a smooth hard wall. The spherocyl-
wall excludes to the polymer overlap. Thus the total volumeinder is of lengthl and diameted=2r.. Thus, no point on
denied to the polymer coils goes down and so their translathe center line of the rod, a line of lendttthat runs along the
center of the cylindrical portion of the spherocylinder, may
be withinr, of the wall; see Fig. (8. Note that, as usual
*Present address: Department of Chemistry and Biochemistry23], the lengthl is the length of the cylindrical part of the
The University of California at Los Angeles, 405 Hilgard Avenue spherocylinder; its total length istd. For the purposes of
Los Angeles, CA 90095-1569. the polymer-wall and polymer-rod interactions, a polymer
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a) E=J dr do exd — Bu,(r,w)]
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The integrand of the part of E@2), which is within pa-
rentheses, is 0 if the polymer sphere is withjjof either the
wall or the surface of the spherocylinder and 1 otherwise.
Therefore, the integral within parentheses is equal to the vol-
ume of the system, which is farther thap from both the
wall and the rod’s surface, the free volume for the polymer
Vi(r,w). If in addition we recognize the sum of E() as
FIG. 1. Schematics of a hard spherocylinder near a hard wallbeing just the expansion of an exponential function, we have
(a) The solid spherocylinder shows it at the smallest angle possible
without overlap of the spherocylinder with the wall and the dashed
spherocylinder shows it the largest angle. The solid arc with arrows
denotes the range of angles available to the spherocylinder at that
height. (b) The cross section of the overlap of the volume a rod The volumeV; may be written as a sum of three parts,
excludes to the polymer with the volume the wall excludes to the @

polymer is shown as the shaded area. The solid lines are the surface
whereV, is the total volume available to a polymer in the

of the spherocylinder and the wall, and the dashed lines are the
surfaces of the volumes they exclude to the polymer.
absence of the rod angl,,.~= Trlr§+(4/3)7rr§, the volume
. ) ) L excluded by the rod to the polymer molecules:=r +r,,
coil is considered to be a hard sphere of radiysthisis the 5 radius of the excluded volume spherocylinder around a
so-called Asakura-Oosawa model5,16,24,2% Then the 44 4 s the volume of overlap of the volume excluded to
position of a polymer coil is entirely determined by the po- tne polymer by the rod and the volume excluded to the poly-
sition of its center of mass. This center of mass is preventeﬁ']er by the Wa”, see F|g(ﬂ)) Thus if the rod is far from the
from coming withinr, of the wall and fronr,+r. from any  wall then the regions excluded to the polymer by the rod and
point on the center line of the rod. The rod excludes polymeby the wall do not overlap andy,=0 but if the rod is close
molecules from a spherocylindrical volume of lengtlaind  to the wall then these two excluded volumes overlap and so
diameter 2(.+r). vo>0. The total volume available to the polymer has in-
Now that we have defined our model we write down thecreased. It is this increase in the free volume, or to put it
partition functionZ for a system of one colloidal rod and a another way, the reduction in the volume excluded to the
fluid of polymer molecules at an activity,, polymer, which is the driving force for adsorption of the rod
onto the wall. The adsorption is not driven by a direct rod-
wall interaction as is usually the case. Using Et).we can
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E=J dr do exg — Bupy(r,w)+zVi(r,m)]. (3

Vi(r,)=Vp— Vet vo(r,w),

Np rewrite Eq.(3) as
== o [ ar do artvext —pur.0 i
N H
P P EZGXF[Zp(Vb_Uexa]XJ dr dw exf — Bup(r,»)
Xizl,Np exq_Bupw(ri)_ﬁurp(rvwari)]a ) +va0(r,w)]. (5)

As the wall is smooth both,,, andv are functions only of

where the coordinates of the center of mass of the rod arée angle between the surface normal and the axis of the rod,
denoted by, and its orientation by. The coordinates of all 6, and of the distance between the center of mass of the rod

N, polymer coils are denoted by'r and the coordinates of
theith polymer coil byr;. As usualB is related to the tem-
peraturel by g=1/kgT. The polymer’s activityz, is related
to its chemical potentigk, by z,= A ~*exp(Bu,), whereA

and the nearest point of the waltl,

Now that we have integrated over the polymer coordi-
nates,= is a one particle partition function and so the prob-
ability of finding the rod at coordinate$(6) is proportional

is the thermal volume of a po]ymer Courwa Upw and Urp to the_integrand of qu) _We now Consi(_jer an ideal gas of
are the energies of interaction of the rod with the wall, arods, i.e., rods at a density so low that interactions between
po]ymer molecule with the wall, and the rod with a po|ymer the rods have a negllglble effect. Then the rods are indepen-
molecule, respectively. They are all hard-core interactionglent of each other and the density of rqe, 6) is again
and so are zero unless the particles overlap, in which cagroportional to the integrand of E(),
they are infinite. As there are no polymer-polymer interac-

p(h,0)=ppexd — Bun,(h,6)+zmvo(h,6)],

tions, Eq.(1) simplifies to (6)
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wherep,, is the bulk density of the ideal gas of rods. In the
absence of polymer, E@6) yields a density proportional to
the Boltzmann weight; with polymer present, its entropy,
times —kgT, acts as an additional “energy” in the Boltz-
mann weight. Equatio(6) is exact in the low density of rods
limit and is the equation we will use to determine how
strongly the rods adsorb onto the surface, in the presence
the polymer. We are interested in thenot the angle depen-
dence of the density of rods, and so we integrate(Bgover

0:

1

1
p(h)=py 5 fﬁld(cosﬁ)exr{—ﬂurw(r,0)+zpvo(r,0)],

@)

where the factor of a half is the normalization of the integra
tion over 6. Note that Eq(7) has exactly the same form for
rods near a wall with a direct rod-wall attractive interaction
the term—z,kgTu(r,0) is an effective rod-wall attractive

interaction. It is attractive because if the rod is far from the

wall vo=0 and then as the rod nears the wajl becomes
positive, thus tending to increase the density of rods. Equ
tion (7) is directly related to the change in free energy
AF(h) when a rod is brought from within the bulk to a
heighth:

AF=—kgT In(p(h)/pp). ®
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B. Numerical evaluation of v

The overlapping excluded volumegy(h, #) is the volume

of overlap of a spherocylinder of lengthrand radiug . with
a half-space. We evaluate it numerically using a Monte Carlo
integration schemé¢27]. Briefly, first a randomly located

oint within the spherocylinder is generated, in a coordinate

ame fixed on the spherocylinder. Generating a point within
a spherocylinder is done by first selecting either the cylindri-
cal part or the end caps. The probability of selecting the
cylinder (end capsis given by the fraction of the total vol-
ume of the spherocylinder, which is part of the cylindend
gaps. In the cylindrical part, the point’s coordinate along the
axis is just a random number betweetnl/2 andl/2 and its
coordinates perpendicular to the axis are those of a random
point within a disk. In the end caps the point is obtained by
first generating a random point within a sphere. Then if the

coordinate of this point along the axis of the spherocylinder
is positivel/2 is added to it and if it is negativig2 is sub-
tracted. Generating a point randomly within a sphere or disk
is done with a routine of Appendix G of Rg228]. Now we
have a randomly chosen point within the spherocylinder, in a
frame fixed on the spherocylinder. The spherocylinder is

%hen rotated to an angle @fwith the normal of the wall. If

the point’'s height above the wall is then less thigrthen it

is within that part of the volume excluded by the spherocyl-
inder, which is also excluded by the wall and hence is part of
vo. If itis abover, it is not. If many such points are gener-
ated then the fraction of points that lie belay is an ap-
proximation to the fractional overlapy(h, 6)/v oxc-

This quantity has actually been measured experimentally for

sphereq10,11]. As all the interactions are athermal the en-
ergy is zero and the free energyF is simply an entropy
times T. Finally, from Eg. (7) the adsorptionl” is easily
calculated using26]

F=deh[p<h)—pb]. ©
0

A. Rod near a wall

It is instructive to consider just a hard spherocylinder near

a hard wall; thez,=0 limit of Eq. (7). The potentialu,,, is

zero as long as the rod and wall do not overlap. For this to be 5

true the lowest point of the center line must be at least
above the wall, as the surface of the spherocylinder.is

away from the center line. The lowest point of the center line
of the spherocylinder is always one of its two ends; see Fig.

1(a). Thereforey,,, is zero providing both ends of the center
line are at least . above the wall and is infinity otherwise.
Then, forz,=0, we can perform the integration oveof Eq.

(7), to obtain the density of spherocylinders as a function of

height:

. pp2(h—ro)/l, (h—ry)<I/2

(h—ro)>1/2. (10

p(
Pb

C. Approximate theory

Here we derive a simple analytical approximation for
p(h). In the presence of polymer the highest density of rods
will be near to the wall, as then, is largest. Therefore, an
approximation should be accurate in this region. The volume

0.5 T T T T
h/d=0.6 _
04 r 7
0.8
03 r R
\O
>
02 r 7

2.0
" \
0.0 : . :
70.0 74.0 78.0 82.0 86.0 90.0
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FIG. 2. The fraction of the volume excluded by the rod which
overlaps with that of the wall, as a function éf(in degreeg for

. ) several values ofi/d. Each curve is labeled by the value lofd.
The density of centers of mass of the spherocylinders deror all curves)/d=10 andr,=r.. The curves are plotted over the
creases linearly as the wall is approached due to the reange iné for which the hard core of the spherocylinder does not

stricted orientations of a rod close to a wall.

overlap with the wall.
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vo is quite small, a fraction of3, if the angledis small, i.e.,  of 6, especially near the wall. Therefore, we approximage
the rod is nearly perpendicular to the wall. Howeveg,is  for the whole range of accessible valuesodfy its value for
large, a fraction ofr 2, if the rod is nearly parallel to the wall 6#=90°. Then, our approximate expression fgh) is

and close to ith<re+r,. This is assuming thdt>r. In

fact asvy appears as the argument of the exponential func- 2(h—r.)

tion in Eq. (7) for the density, the density of rods close and _ | po 7 exdzuo(h907)], (h—=ro)<I/2

nearly parallel to the wall increases as dxphs we shall see p(h)=

in the next section this can lead to very strong adsorption. Pb (h=r¢)>l72.
So, we require an approximation accurate for rods close (11)

to, and hence necessarily almost parallel to, the wall. In Fig.

2 we have plotted /v, as a function of for a number of  vy(h,90°) is easy to calculate. It consists of two parts, the
heightsh. For smallh the spherocylinder is restricted to a volume of the cylinder of radius, at a heighth, which is
small range of angles by the hard-core spherocylinder-walbelow a height of ,, and the volume of a sphere of the same
interaction. In additiony is not a strongly varying function radius, which is below this height. So,

Te

~(h =) (r2 = (h = 1))

+3 [2r2 — 3r2(h —rp)

[ [r? cos™! (h—_rﬂ)

v,(h,90°) =
+ (h —1p)?] h<ret+r,

0 h>r.+r,

(12

Equation(12) is restricted tor.=r, and so requires gener- and via the simple approximate theory of Sec. Il C. We have
alization if r,>r.. However, the Asakura-Oosawa model done so for a number of different values of the length to
[8,15,16 of the rod-polymer interaction is best for small diameter ratid/d of the rods, and the activity of the rods.
polymer coils, with a radius of gyration no larger than that of A dimensionless polymer activity is required; we define the
the colloidal part|C|d:16,17,29 Therefore, we will not per- reduced activityzz Zp(er)3_ As there are no po'ymer-
form calculations withr,>r; and so do not require a more polymer interactions and the density of rods is so low that
general expression. o they take up a negligible fraction of the volume, the density
Forh>re+rp, vo(h,90°)=0 and the approximation of ¢ ho\ymer coils is equal to their activity, [8,9]. So, the
Eq. (11) yields the same value for(h) as in the absence of |1 me fraction occupied by the coils isr(6)z=(1/2)z. In
polymer, Eq(10). Howev_er, for small and Iarg@earqr) gs Figs. 3 and 4, we show how the density of the centers of
Vo IS still nonzero(see Fig. 2 and so Eq(ll_) is an under- mass of rods near the wall depends on their length and on the
estimate. As approaches, the arc over Wh'Ch _the rod may concentration of the polymer. Note that Fig. 3 is for a poly-
rotate tean to Zero and then the approximation of () mer coil of radius half that of the rod while Fig. 4 is for
be_comes increasingly accurate. For smalthe rod must be olymer coils with the same radius as the rod. The free en-
quite close for the excluded volume of a near parallel rod té;rgy change on bringing a rod from within the bulk to a

overlap with that of the wall. So, reducing will improve : : ; )
the accuracy of Eq11). Also, if | is large then the arc over {i]glnglrltihslzlg[fe%oirrt:o':r}gl t50— Inp(h), see Eq(®). The adsorp

which the rod can rotate decreases and so our approximation Both the exact numerical integration of E@) over 6 and

beco_mes more accurate. In the op_pqsr_[e lithi:0, th_e ap-  the approximate Eq(11) are shown in Figs. 3 and 4. The
proximation of Eq.(11) is exact; as it is in the,=0 limit. approximation is seen to be excellent near the peak(i).
IIl. RESULTS AND DISCUSSION The highest density of rods occurs only a little more than _
above the wall, where the overlap of the excluded volumes is
Now we are able to calculate the density of rods near dargest and the orientations of a rod are very restricted. This
wall both exactly via the numerical technique of Sec. Il B finding provides support for the related approximations made
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oo bV S | 0.0 0.1 0.2 03 0.4

0.0 0.5 1.0 1.5 20 7
FIG. 5. The adsorptiod” is plotted as a function ot. Each

FIG. 3. The ratio of the density of rodg(h) to their bulk den-  cyrve is labeled with its value dfd. The curve labeled O is for
sity py, as a function of heighh above the wall. The two solid spheres. For all curves,=0.5.

curves are from Monte Carlo integration, the three dashed curves

are from the analytical theory. The curves are labeled with their_. . . .
value of I/d; the dashed curve labeled 0 is for spheres. For aIISIStentIy underestimatgs(h) because it underestimateg.

curves,r,=0.5r, andz=0.2. The inset graph is an enlargement of As can .be sggn in Fig. 2,0 '.S a minimum forg=90°.
a small region of the main graph. From Fig. 3 it is clear that, in the presence of polymer, long

rods,|/d=10, adsorb much more strongly onto a hard wall
in Ref.[2]. As can be seen in Fig.#, varies very little over than do sphergs. In Fig. 3 the maximum density of sphgres IS
the restricted range of orientations available to a rod close t8nly about twice thgt in the bulk. quever, the density of
the wall. This makes our approximation almost indistin- rods reaches a maximum of over 20 times the bulk value. For

guishable from the exact, numerical result at these height£Ven longer rods the density maximum increases exponen-
Unlike spheres, the maximum ip is not ath=r.. As h tially and becomes very _Iarge. The Ia_lrger density maxima
decreases, the orientational freedom of the rod decreases, é‘égrespond.to free .energles ofhaldhesmnhto thf Wa”'.l\lNh'Ch
Eq. (10), and this tends to counterbalance the depletion atd'€ many timegT; rods much longer thaid=10 wi
traction of the rod for the wall. In tha—r_ limit the orien- adhere to the wall effectively irreversibly. The sensitivity of

tational freedom of a rod tends to 0 and so the density of rodge adsorption to the length of the rod is also notable at small
tends to 0. The approximation is much less good near th ngths. In Fig. 3 we see that, for this valuezpithe density
minimum in p(h), which is to be expected as there the rodsOf short,1/d=5, rods is actually less than that of spheres. As

can rotate over a much larger angle. The approximation cof2dS: but not spheres, approach a wall they lose orientational
entropy, which tends to reduce the density of the rods. Thus,

10.0 , without polymer the density of rods but not of spheres is
reduced near a wall; see E(.0). For long rods and high
7=0.4 this is more than counterbalanced by the greater excluded
80 | 8 volume of rods as compared to spheres.ZAs increased

beyond the value of 0.2 the density ldfl=5 rods near the
wall increases more rapidly than that of spheres, and even-
6.0 | 7 tually becomes larger than that of spheres.
The dependence of the adsorption on the relative radii of the
rod and of the polymer may be seen if Figs. 3 and 4 are
compared. Figure 4 shows the density for rods With=10
and polymer of the same radiug,=r, while Fig. 3 shows
20 | 0 i the density of rods with the saniéd and the same=0.2
0.2 A\ / but with polymer of radius half that of the rod,= 0.5 . Of
RN course, although the volume fraction of polymer is the same
0.000 05 —-1*0“ 1'5 2‘0 2‘5 30 ilj each case, the number density of the smallgr polymer is 8
: : : h/d : : : times that of the larger. If the polymer’s radius is the same as
that of the rod then for=0.2, which corresponds to a vol-
FIG. 4. The ratio of the density of rogg(h) to their bulk den- ~Ume fraction of about 10%, the adsorption is very weak; the
sity pp, as a function of heighb above the wall. The two solid density near the wall is always less than that in the bulk.
curves are from Monte Carlo integration, the three dashed curveklowever, the same volume fraction of polymer of half the
are from the analytical theory. The curves are labeled with theifadius of the rods induces quite strong adsorption, a maxi-
value ofz. For all curvesy,=r. andl/d=10. mum density over 20 times the bulk density.

p(h)/p,
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The adsorptiol’, calculated using Eq9), is plotted in Fig.  than that of rods. The density of long rods becomes much
5, as a function ofz for a number of values of/d. The higher near the wall than does the density of spheres.
curves were calculated using the approximate expression for Equation(6) for the density has exactly the same form for
p(h), Eqg. (11). For the calculation of the adsorptidhour  a rod attracted to the wall by a direct rod-wall interaction.
approximation is highly accurate as it is accurate where th&o, in the presence of any attraction with a range approxi-
density is highest. This is particularly so at higlor I, the  mately equal to the diameter of the rod, the density profiles
density in the peak near the wall grows exponentially withwill be qualitatively the same as those of our Figs. 3 and 4.
increasingz or |, see Eq(11). Then the adsorption is domi- This applies to, for example, van der Waals attractidng].
nated by this peak. It is obvious from Fig. 5 that the adsorp- So far, we have only considered an ideal gas of rods ad-
tion of long rods is very strong, or equivalently that only sorbing onto a wall. This was reduced to a simple one-
small volume fractions of polymer are required to produce gjarticle problem, which, of course, did not show a phase
layer of rods near the wall with a much higher density thanqition. Although we will not perform any calculations
in the bulk. . . .
that account for interactions between rods at the wall it is,

perhaps, interesting to speculate on what will happen near
the wall. We have seen that the density near the wall can

In a mixed suspension of rods and small polymer coilsjpecome much higher than that in the bulk, particularlly i
the rods adsorb onto a hard wall in contact with the suspens large. The density peak is narrow due to the short ranged
sion. The adsorption is driven by depletion forces: The enattraction and so only a monolayer is formed. So, we expect
tropy of the polymer coils goes up when the rods lie close t@ dense monolayer, which would resemble a system of two-
and parallel to the wall. From Figs. 3 and 4 we see that thélimensional rods. For strong adsorption the density of this
density of rods has a narrow peak, which implies that anonolayer will be much higher than in the bulk. This imme-
monolayer is formed. This is expected as the depletion forcegliately suggests that even at low bulk densities, i.e., densities
are short ranged. The rod feels the wall up@+r.+2r, below a bulk transition to a nematic phadS] or between
away but the interaction is only strong when the rod apiwo fluid phaseq25,30, the density of a monolayer just
proaches to within .+ 2r ,. Only then is there strong over- above the wall may be high enough for this monolayer to
lap of the excluded volumes. This is reflected in the densityundergo a transition to a two-dimensional nematic phase
profile. Just at the surface there is a dense monolayer of rods,21,31. We expect the surface layer to be in the nematic
lying parallel to the wall, then at larger separations the denphase for densitiek of order 1Id and greater. Crystalliza-
sity of rods is actually below that of the bulk. The peak in thetion of spheres at a wall at lower bulk densities than required
density is strongly dependent on longer rods adsorb for bulk crystallization has been observgtB] and treated
strongly onto the wall. Again this is unsurprising, the ex- theoretically[32].
cluded volume and hence the potential increase in the en-
g?{agecifoghe polymer coils increases linearly with the length ACKNOWLEDGMENTS
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