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Depletion driven adsorption of colloidal rods onto a hard wall

Richard P. Sear*
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 3 September 1997!

In a mixed suspension of rods and small polymer coils, the rods adsorb onto a hard wall in contact with the
suspension. This adsorption is studied in the low density of rods limit. It is driven by depletion forces and is
much stronger for long rods than for spheres. This is shown by means of exact, numerical, calculations and an
approximate theory.@S1063-651X~98!08202-6#

PACS number~s!: 82.70.Dd, 67.70.1n, 61.25.Hq
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I. INTRODUCTION

Most of the properties of a colloidal suspension depe
on the shape of its constituent particles. Certainly, the b
phase behavior of colloidal particles is sensitive to th
shape, as well as to the strength of any attractive interacti
Spheres behave differently from rods, which in turn beha
differently from disks. This is true in the presence@1,2# and
in the absence@3,4# of attractive interactions. However,
description of the bulk phase behavior does not complete
description of a suspension. We might also like to know,
example, its behavior near the walls of its container. W
study this behavior here for rodlike colloidal particles in t
presence of nonadsorbing polymer, and compare this be
ior to that of spherical particles. A pure suspension of ro
does not adsorb onto a hard wall, in the absence of sig
cant van der Waals attractions; here we will assume that
are negligible. Indeed, the density of rods near the wal
below the bulk density. However, the rods in a mixed s
pension of rods and small nonadsorbing~onto either the rods
or the wall! polymer coils do adsorb onto the wall. Th
adsorption is driven by the increase in the volume availa
to the polymer coils when a rod is near a wall, the so-cal
depletion forces@5–9#. We find much stronger adsorption fo
rods than has been found for spheres@10–12#.

The depletion driven adsorption of spherical colloidal p
ticles onto a wall has been extensively studied@10–14#.
These studies were primarily experimental but compari
was made with theories for depletion forces@15,16# and
qualitative agreement found. Both the sphere and the w
exclude the centers of mass of the polymer coils from
volume that extends up to about the radius of gyration of
polymer away from the surface of the sphere or wall:
Asakura-Oosawa model for the interaction of the polym
with the sphere and wall@15,16#. This is true as long as th
radius of gyration is not too much larger than the radius
the sphere@17#. When a sphere approaches the wall, the v
ume the sphere excludes to the polymer and the volume
wall excludes to the polymer overlap. Thus the total volu
denied to the polymer coils goes down and so their tran
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tional entropy goes up. For polymer coils rather smaller th
the spheres, free energies of adsorption of up to 6kBT have
been obtained@10,11#, wherekB is Boltzmann’s constant and
T is the temperature.

Rodlike colloids are not uncommon, examples are the
bacco mosaic virus@18# and synthetic colloidal rods@9,19#.
The effect of adding polymer to their suspensions has b
studied, at least in the bulk@9,18,20#. As far as we are aware
no experiments comparable to those for spheres near a
have been performed. However, Buitenhuiset al. @20# report
a thin layer of the nematic phase of the rods against the w
of their capillary. This is at least suggestive of some attr
tion between the rods and the capillary. The adsorption
rods does not seem to have been much studied theoretic
An exception is the work of Matsuyamaet al. @21#, who
studied a model of rods with discrete orientations. Howev
the adsorption of polymers that have some degree of rigi
has been studied; see Ref.@22# and references therein. Th
results are consistent with those found here; as the rigidit
the polymer increases, so does the adsorption.

In the following section we first derive the exact statistic
mechanical expression for the density profile of rods nea
wall, as a function of the polymer density. We use this e
pression in two ways: the first is by evaluating it exac
using Monte Carlo integration and the second is by deriv
a simple analytical approximation to it. Example profiles
the density of rods near the wall are shown and discusse
Sec. III. We end with a conclusion, Sec. IV.

II. THEORY

We start by defining our models for the rod, the polym
coil, and the wall. The interactions between polymer co
are neglected, i.e., a fluid of just polymer coils is simply
ideal gas. This leaves us with just three interactions in or
to describe our system: the rod-wall, polymer-wall, and ro
polymer interactions. The rod-wall interaction is that of
hard spherocylinder with a smooth hard wall. The spheroc
inder is of lengthl and diameterd52r c . Thus, no point on
the center line of the rod, a line of lengthl that runs along the
center of the cylindrical portion of the spherocylinder, m
be within r c of the wall; see Fig. 1~a!. Note that, as usua
@23#, the lengthl is the length of the cylindrical part of the
spherocylinder; its total length isl 1d. For the purposes o
the polymer-wall and polymer-rod interactions, a polym

y,
1983 © 1998 The American Physical Society
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1984 57RICHARD P. SEAR
coil is considered to be a hard sphere of radiusr p ; this is the
so-called Asakura-Oosawa model@15,16,24,25#. Then the
position of a polymer coil is entirely determined by the p
sition of its center of mass. This center of mass is preven
from coming withinr p of the wall and fromr p1r c from any
point on the center line of the rod. The rod excludes polym
molecules from a spherocylindrical volume of lengthl and
diameter 2(r c1r p).

Now that we have defined our model we write down t
partition functionJ for a system of one colloidal rod and
fluid of polymer molecules at an activityzp ,

J5(
Np

zp
Np

Np! E dr dv drNpexp@2burw~r ,v!#

3 )
i 51,Np

exp@2bupw~r i !2burp~r ,v,r i !#, ~1!

where the coordinates of the center of mass of the rod
denoted byr , and its orientation byv. The coordinates of al
Np polymer coils are denoted byrNp and the coordinates o
the i th polymer coil byr i . As usualb is related to the tem-
peratureT by b51/kBT. The polymer’s activityzp is related
to its chemical potentialmp by zp5L21exp(bmp), whereL
is the thermal volume of a polymer coil.urw , upw , andurp
are the energies of interaction of the rod with the wall
polymer molecule with the wall, and the rod with a polym
molecule, respectively. They are all hard-core interacti
and so are zero unless the particles overlap, in which c
they are infinite. As there are no polymer-polymer intera
tions, Eq.~1! simplifies to

FIG. 1. Schematics of a hard spherocylinder near a hard w
~a! The solid spherocylinder shows it at the smallest angle poss
without overlap of the spherocylinder with the wall and the dash
spherocylinder shows it the largest angle. The solid arc with arr
denotes the range of angles available to the spherocylinder at
height. ~b! The cross section of the overlap of the volume a r
excludes to the polymer with the volume the wall excludes to
polymer is shown as the shaded area. The solid lines are the su
of the spherocylinder and the wall, and the dashed lines are
surfaces of the volumes they exclude to the polymer.
d
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J5E dr dv exp@2burw~r ,v!#

3(
Np

zp
Np

Np! S E dr1exp@2bupw~r1!

2burp~r ,v,r1!# D Np

. ~2!

The integrand of the part of Eq.~2!, which is within pa-
rentheses, is 0 if the polymer sphere is withinr p of either the
wall or the surface of the spherocylinder and 1 otherwi
Therefore, the integral within parentheses is equal to the
ume of the system, which is farther thanr p from both the
wall and the rod’s surface, the free volume for the polym
Vf(r ,v). If in addition we recognize the sum of Eq.~2! as
being just the expansion of an exponential function, we h

J5E dr dv exp@2burw~r ,v!1zpVf~r ,v!#. ~3!

The volumeVf may be written as a sum of three parts,

Vf~r ,v!5Vb2vexc1v0~r ,v!, ~4!

whereVb is the total volume available to a polymer in th
absence of the rod andvexc5p lr e

21(4/3)pr e
3, the volume

excluded by the rod to the polymer molecules;r e5r c1r p ,
the radius of the excluded volume spherocylinder aroun
rod. v0 is the volume of overlap of the volume excluded
the polymer by the rod and the volume excluded to the po
mer by the wall; see Fig. 1~b!. Thus if the rod is far from the
wall then the regions excluded to the polymer by the rod a
by the wall do not overlap andv050 but if the rod is close
to the wall then these two excluded volumes overlap and
v0.0. The total volume available to the polymer has i
creased. It is this increase in the free volume, or to pu
another way, the reduction in the volume excluded to
polymer, which is the driving force for adsorption of the ro
onto the wall. The adsorption is not driven by a direct ro
wall interaction as is usually the case. Using Eq.~4! we can
rewrite Eq.~3! as

J5exp@zp~Vb2vexc!#3E dr dv exp@2burw~r ,v!

1zpv0~r ,v!#. ~5!

As the wall is smooth bothurw andv0 are functions only of
the angle between the surface normal and the axis of the
u, and of the distance between the center of mass of the
and the nearest point of the wall,h.

Now that we have integrated over the polymer coor
nates,J is a one particle partition function and so the pro
ability of finding the rod at coordinates (h,u) is proportional
to the integrand of Eq.~3!. We now consider an ideal gas o
rods, i.e., rods at a density so low that interactions betw
the rods have a negligible effect. Then the rods are indep
dent of each other and the density of rodsr(h,u) is again
proportional to the integrand of Eq.~3!,

r~h,u!5rbexp@2burw~h,u!1zpv0~h,u!#, ~6!
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57 1985DEPLETION DRIVEN ADSORPTION OF COLLOIDAL . . .
whererb is the bulk density of the ideal gas of rods. In th
absence of polymer, Eq.~6! yields a density proportional to
the Boltzmann weight; with polymer present, its entrop
times 2kBT, acts as an additional ‘‘energy’’ in the Boltz
mann weight. Equation~6! is exact in the low density of rod
limit and is the equation we will use to determine ho
strongly the rods adsorb onto the surface, in the presenc
the polymer. We are interested in theh, not the angle depen
dence of the density of rods, and so we integrate Eq.~6! over
u :

r~h!5rb

1

2 E
21

1

d~cosu!exp@2burw~r ,u!1zpv0~r ,u!#,

~7!

where the factor of a half is the normalization of the integ
tion overu. Note that Eq.~7! has exactly the same form fo
rods near a wall with a direct rod-wall attractive interactio
the term2zpkBTv0(r ,u) is an effective rod-wall attractive
interaction. It is attractive because if the rod is far from t
wall v050 and then as the rod nears the wallv0 becomes
positive, thus tending to increase the density of rods. Eq
tion ~7! is directly related to the change in free ener
DF(h) when a rod is brought from within the bulk to
heighth:

DF52kBT ln„r~h!/rb…. ~8!

This quantity has actually been measured experimentally
spheres@10,11#. As all the interactions are athermal the e
ergy is zero and the free energyDF is simply an entropy
times T. Finally, from Eq. ~7! the adsorptionG is easily
calculated using@26#

G5E
0

`

dh@r~h!2rb#. ~9!

A. Rod near a wall

It is instructive to consider just a hard spherocylinder n
a hard wall; thezp50 limit of Eq. ~7!. The potentialurw is
zero as long as the rod and wall do not overlap. For this to
true the lowest point of the center line must be at leasr c
above the wall, as the surface of the spherocylinder isr c
away from the center line. The lowest point of the center l
of the spherocylinder is always one of its two ends; see F
1~a!. Therefore,urw is zero providing both ends of the cent
line are at leastr c above the wall and is infinity otherwise
Then, forzp50, we can perform the integration overu of Eq.
~7!, to obtain the density of spherocylinders as a function
height:

r~h!5H rb2~h2r c!/ l , ~h2r c!< l /2

rb , ~h2r c!. l /2.
~10!

The density of centers of mass of the spherocylinders
creases linearly as the wall is approached due to the
stricted orientations of a rod close to a wall.
,
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B. Numerical evaluation of v0

The overlapping excluded volumev0(h,u) is the volume
of overlap of a spherocylinder of lengthl and radiusr e with
a half-space. We evaluate it numerically using a Monte Ca
integration scheme@27#. Briefly, first a randomly located
point within the spherocylinder is generated, in a coordin
frame fixed on the spherocylinder. Generating a point wit
a spherocylinder is done by first selecting either the cylind
cal part or the end caps. The probability of selecting
cylinder ~end caps! is given by the fraction of the total vol
ume of the spherocylinder, which is part of the cylinder~end
gaps!. In the cylindrical part, the point’s coordinate along th
axis is just a random number between2 l /2 and l /2 and its
coordinates perpendicular to the axis are those of a ran
point within a disk. In the end caps the point is obtained
first generating a random point within a sphere. Then if
coordinate of this point along the axis of the spherocylind
is positive l /2 is added to it and if it is negativel /2 is sub-
tracted. Generating a point randomly within a sphere or d
is done with a routine of Appendix G of Ref.@28#. Now we
have a randomly chosen point within the spherocylinder, i
frame fixed on the spherocylinder. The spherocylinder
then rotated to an angle ofu with the normal of the wall. If
the point’s height above the wall is then less thanr p then it
is within that part of the volume excluded by the spheroc
inder, which is also excluded by the wall and hence is par
v0 . If it is abover p it is not. If many such points are gene
ated then the fraction of points that lie belowr p is an ap-
proximation to the fractional overlapv0(h,u)/vexc.

C. Approximate theory

Here we derive a simple analytical approximation f
r(h). In the presence of polymer the highest density of ro
will be near to the wall, as thenv0 is largest. Therefore, an
approximation should be accurate in this region. The volu

FIG. 2. The fraction of the volume excluded by the rod whi
overlaps with that of the wall, as a function ofu ~in degrees! for
several values ofh/d. Each curve is labeled by the value ofh/d.
For all curves,l /d510 andr p5r c . The curves are plotted over th
range inu for which the hard core of the spherocylinder does n
overlap with the wall.
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1986 57RICHARD P. SEAR
v0 is quite small, a fraction ofr e
3, if the angleu is small, i.e.,

the rod is nearly perpendicular to the wall. However,v0 is
large, a fraction oflr e

2, if the rod is nearly parallel to the wal
and close to it,h,r e1r p . This is assuming thatl @r e . In
fact asv0 appears as the argument of the exponential fu
tion in Eq. ~7! for the density, the density of rods close a
nearly parallel to the wall increases as exp(l). As we shall see
in the next section this can lead to very strong adsorptio

So, we require an approximation accurate for rods cl
to, and hence necessarily almost parallel to, the wall. In F
2 we have plottedv0 /vexc as a function ofu for a number of
heightsh. For smallh the spherocylinder is restricted to
small range of angles by the hard-core spherocylinder-w
interaction. In additionv0 is not a strongly varying function
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of u, especially near the wall. Therefore, we approximatev0
for the whole range of accessible values ofu by its value for
u590°. Then, our approximate expression forr(h) is

r~h!5H rb

2~h2r c!

l
exp@zpv0~h,90°!#, ~h2r c!< l /2

rb , ~h2r c!. l /2.

~11!

v0(h,90°) is easy to calculate. It consists of two parts, t
volume of the cylinder of radiusr e at a heighth, which is
below a height ofr p , and the volume of a sphere of the sam
radius, which is below this height. So,
~12!
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Equation~12! is restricted tor c>r p and so requires gener
alization if r p.r c . However, the Asakura-Oosawa mod
@8,15,16# of the rod-polymer interaction is best for sma
polymer coils, with a radius of gyration no larger than that
the colloidal particle@16,17,29#. Therefore, we will not per-
form calculations withr p.r c and so do not require a mor
general expression.

For h.r e1r p , v0(h,90°)50 and the approximation o
Eq. ~11! yields the same value forr(h) as in the absence o
polymer, Eq.~10!. However, for small and large~nearp! u’s
v0 is still nonzero~see Fig. 2! and so Eq.~11! is an under-
estimate. Ash approachesr c the arc over which the rod ma
rotate tends to zero and then the approximation of Eq.~11!
becomes increasingly accurate. For smallr p the rod must be
quite close for the excluded volume of a near parallel rod
overlap with that of the wall. So, reducingr p will improve
the accuracy of Eq.~11!. Also, if l is large then the arc ove
which the rod can rotate decreases and so our approxima
becomes more accurate. In the opposite limit:l→0, the ap-
proximation of Eq.~11! is exact; as it is in thezp50 limit.

III. RESULTS AND DISCUSSION

Now we are able to calculate the density of rods nea
wall both exactly via the numerical technique of Sec. II
f

o

ion

a

and via the simple approximate theory of Sec. II C. We ha
done so for a number of different values of the length
diameter ratiol /d of the rods, and the activity of the rodszp .
A dimensionless polymer activity is required; we define t
reduced activityz5zp(2r p)3. As there are no polymer
polymer interactions and the density of rods is so low t
they take up a negligible fraction of the volume, the dens
of polymer coils is equal to their activityzp @8,9#. So, the
volume fraction occupied by the coils is (p/6)z.(1/2)z. In
Figs. 3 and 4, we show how the density of the centers
mass of rods near the wall depends on their length and on
concentration of the polymer. Note that Fig. 3 is for a po
mer coil of radius half that of the rod while Fig. 4 is fo
polymer coils with the same radius as the rod. The free
ergy change on bringing a rod from within the bulk to
heighth is proportional to2 lnr(h), see Eq.~8!. The adsorp-
tion G is plotted in Fig. 5.

Both the exact numerical integration of Eq.~7! overu and
the approximate Eq.~11! are shown in Figs. 3 and 4. Th
approximation is seen to be excellent near the peak inr(h).
The highest density of rods occurs only a little more thanr c
above the wall, where the overlap of the excluded volume
largest and the orientations of a rod are very restricted. T
finding provides support for the related approximations ma
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57 1987DEPLETION DRIVEN ADSORPTION OF COLLOIDAL . . .
in Ref. @2#. As can be seen in Fig. 2v0 varies very little over
the restricted range of orientations available to a rod clos
the wall. This makes our approximation almost indist
guishable from the exact, numerical result at these heig
Unlike spheres, the maximum inr is not at h5r c . As h
decreases, the orientational freedom of the rod decreases
Eq. ~10!, and this tends to counterbalance the depletion
traction of the rod for the wall. In theh→r c limit the orien-
tational freedom of a rod tends to 0 and so the density of r
tends to 0. The approximation is much less good near
minimum in r(h), which is to be expected as there the ro
can rotate over a much larger angle. The approximation c

FIG. 3. The ratio of the density of rodsr(h) to their bulk den-
sity rb , as a function of heighth above the wall. The two solid
curves are from Monte Carlo integration, the three dashed cu
are from the analytical theory. The curves are labeled with th
value of l /d; the dashed curve labeled 0 is for spheres. For
curves,r p50.5r c andz50.2. The inset graph is an enlargement
a small region of the main graph.

FIG. 4. The ratio of the density of rodsr(h) to their bulk den-
sity rb , as a function of heighth above the wall. The two solid
curves are from Monte Carlo integration, the three dashed cu
are from the analytical theory. The curves are labeled with th
value ofz. For all curves,r p5r c and l /d510.
to
-
ts.

see
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sistently underestimatesr(h) because it underestimatesv0 .
As can be seen in Fig. 2,v0 is a minimum foru590°.
From Fig. 3 it is clear that, in the presence of polymer, lo
rods, l /d510, adsorb much more strongly onto a hard w
than do spheres. In Fig. 3 the maximum density of sphere
only about twice that in the bulk. However, the density
rods reaches a maximum of over 20 times the bulk value.
even longer rods the density maximum increases expon
tially and becomes very large. The larger density maxi
correspond to free energies of adhesion to the wall, wh
are many timeskBT; rods much longer thanl /d510 will
adhere to the wall effectively irreversibly. The sensitivity
the adsorption to the length of the rod is also notable at sm
lengths. In Fig. 3 we see that, for this value ofz, the density
of short,l /d55, rods is actually less than that of spheres.
rods, but not spheres, approach a wall they lose orientati
entropy, which tends to reduce the density of the rods. Th
without polymer the density of rods but not of spheres
reduced near a wall; see Eq.~10!. For long rods and highz
this is more than counterbalanced by the greater exclu
volume of rods as compared to spheres. Asz is increased
beyond the value of 0.2 the density ofl /d55 rods near the
wall increases more rapidly than that of spheres, and ev
tually becomes larger than that of spheres.
The dependence of the adsorption on the relative radii of
rod and of the polymer may be seen if Figs. 3 and 4
compared. Figure 4 shows the density for rods withl /d510
and polymer of the same radius,r p5r c , while Fig. 3 shows
the density of rods with the samel /d and the samez50.2
but with polymer of radius half that of the rod,r p50.5r c . Of
course, although the volume fraction of polymer is the sa
in each case, the number density of the smaller polymer
times that of the larger. If the polymer’s radius is the same
that of the rod then forz50.2, which corresponds to a vo
ume fraction of about 10%, the adsorption is very weak;
density near the wall is always less than that in the bu
However, the same volume fraction of polymer of half t
radius of the rods induces quite strong adsorption, a m
mum density over 20 times the bulk density.

es
ir
ll

es
ir

FIG. 5. The adsorptionG is plotted as a function ofz. Each
curve is labeled with its value ofl /d. The curve labeled 0 is for
spheres. For all curves,r p50.5r c .
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1988 57RICHARD P. SEAR
The adsorptionG, calculated using Eq.~9!, is plotted in Fig.
5, as a function ofz for a number of values ofl /d. The
curves were calculated using the approximate expression
r(h), Eq. ~11!. For the calculation of the adsorptionG our
approximation is highly accurate as it is accurate where
density is highest. This is particularly so at highz or l , the
density in the peak near the wall grows exponentially w
increasingz or l , see Eq.~11!. Then the adsorption is domi
nated by this peak. It is obvious from Fig. 5 that the adso
tion of long rods is very strong, or equivalently that on
small volume fractions of polymer are required to produc
layer of rods near the wall with a much higher density th
in the bulk.

IV. CONCLUSION

In a mixed suspension of rods and small polymer co
the rods adsorb onto a hard wall in contact with the susp
sion. The adsorption is driven by depletion forces: The
tropy of the polymer coils goes up when the rods lie close
and parallel to the wall. From Figs. 3 and 4 we see that
density of rods has a narrow peak, which implies tha
monolayer is formed. This is expected as the depletion for
are short ranged. The rod feels the wall up tol /21r c12r p
away but the interaction is only strong when the rod a
proaches to withinr c12r p . Only then is there strong over
lap of the excluded volumes. This is reflected in the den
profile. Just at the surface there is a dense monolayer of
lying parallel to the wall, then at larger separations the d
sity of rods is actually below that of the bulk. The peak in t
density is strongly dependent onl ; longer rods adsorb
strongly onto the wall. Again this is unsurprising, the e
cluded volume and hence the potential increase in the
tropy of the polymer coils increases linearly with the leng
of the rod.

If we compare rods with spheres, we see that in the
sence of polymer the density of rods but not of spheres dr
as the wall is approached. This is due to the decreas
orientational freedom as a rod approaches a wall. In the p
ence of polymer, the larger excluded volume of a rod
compared with a sphere~if they have the same radius! causes
the density of rods near the wall to increase more quic
qu
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than that of rods. The density of long rods becomes m
higher near the wall than does the density of spheres.

Equation~6! for the density has exactly the same form f
a rod attracted to the wall by a direct rod-wall interactio
So, in the presence of any attraction with a range appro
mately equal to the diameter of the rod, the density profi
will be qualitatively the same as those of our Figs. 3 and
This applies to, for example, van der Waals attractions@1,2#.

So far, we have only considered an ideal gas of rods
sorbing onto a wall. This was reduced to a simple on
particle problem, which, of course, did not show a pha
transition. Although we will not perform any calculation
that account for interactions between rods at the wall it
perhaps, interesting to speculate on what will happen n
the wall. We have seen that the density near the wall
become much higher than that in the bulk, particularly ifl /d
is large. The density peak is narrow due to the short ran
attraction and so only a monolayer is formed. So, we exp
a dense monolayer, which would resemble a system of t
dimensional rods. For strong adsorption the density of t
monolayer will be much higher than in the bulk. This imm
diately suggests that even at low bulk densities, i.e., dens
below a bulk transition to a nematic phase@23# or between
two fluid phases@25,30#, the density of a monolayer jus
above the wall may be high enough for this monolayer
undergo a transition to a two-dimensional nematic ph
@3,21,31#. We expect the surface layer to be in the nema
phase for densitiesG of order 1/ld and greater. Crystalliza
tion of spheres at a wall at lower bulk densities than requi
for bulk crystallization has been observed@13# and treated
theoretically@32#.
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